Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
2.
Nat Med ; 29(11): 2866-2884, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814059

RESUMEN

Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Animales , Enfermedad de Huntington/genética , Enfermedades Neurodegenerativas/patología , Microglía/patología , Sinapsis/fisiología , Cuerpo Estriado , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Proteína Huntingtina/genética , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad
3.
Ophthalmol Sci ; 3(2): 100290, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37124168

RESUMEN

Purpose: Complement C1q, the initiating molecule of the classical complement cascade, is involved in synapse elimination and neuronal loss in neurodegenerative diseases including glaucoma. Here we report an evaluation of the safety, tolerability, and ocular pharmacokinetics (PK) and pharmacodynamics of intravitreal (IVT) injections of ANX007, an anti-C1q monoclonal antibody fragment that blocks activation of the classical complement cascade. Design: An open-label, single-dose-escalation phase Ia study followed by a double-masked, randomized, sham-controlled, repeat-injection phase Ib study. Participants: A total of 26 patients with primary open-angle glaucoma. Methods: Nine patients with primary open-angle glaucoma (mean Humphrey visual field deviation between -3 and -18 decibels [dB]) were enrolled in phase Ia and received single doses of ANX007 (1.0 mg, n = 3; 2.5 mg, n = 3; or 5.0 mg, n = 3). Seventeen patients (mean Humphrey visual field deviation between -3 and -24 dB) were enrolled in phase Ib and randomized to 2 monthly doses of ANX007 (sham, n = 6; 2.5 mg ANX007, n = 6; or 5 mg ANX007, n = 5). Main Outcome Measures: Safety and tolerability (including laboratory evaluation of urinalysis, complete blood count, and serum chemistries), ANX007 PK, target engagement, and immunogenicity. Results: The mean age overall was 70 years in phase Ia and 68 years in phase Ib. In both studies, no serious adverse events were observed, no non-ocular treatment-emergent adverse events (TEAEs) attributable to study drug were reported, and ocular TEAEs were mild. Intraocular pressure returned to normal levels for all patients within 45 minutes of IVT injection. No clinically significant deviations in laboratory results were observed. In the phase Ib study, C1q in the aqueous humor was reduced to undetectable levels in both the 2.5 mg and 5 mg cohorts 4 weeks after the first ANX007 dose. Conclusions: In these studies, single and repeat IVT ANX007 injections were well tolerated and demonstrated full target engagement 4 weeks after dosing with both low and high doses, supporting monthly or less-frequent dosing. Further investigation in neurodegenerative ocular diseases is warranted. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

4.
Invest Ophthalmol Vis Sci ; 64(2): 3, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729444

RESUMEN

Purpose: C1q and the classical complement cascade are key regulators of synaptic pruning, and their aberrant activation has been implicated in neurodegenerative ophthalmic diseases including geographic atrophy and glaucoma. The antigen-binding fragment antibody ANX007 specifically recognizes globular head groups of C1q to block substrate binding and functionally inhibit classical complement cascade activation. ANX007 was assessed in nonclinical studies of biodistribution and C1q target engagement in the eye following intravitreal (IVT) administration in cynomolgus monkeys. Methods: Female juvenile cynomolgus monkeys (n = 12) received a single bilateral dose of 1 or 5 mg ANX007/eye, with vitreous and non-perfused tissue samples collected approximately 4 weeks later. In a separate study, male (n = 6/5) and female (n = 6/5) animals received repeat bilateral dosing of 1, 2.5, or 5 mg ANX007/eye on days 1 and 29, with aqueous and vitreous collections on day 44 or day 59. Tissues from the 5 mg/eye repeat-dose group were perfused, and retina, choroid, and optic nerve samples were collected approximately 2 and 4 weeks post-last dose. Results: Following a single dose of ANX007, vitreous levels of free drug were measurable through 4 weeks at both the 1 and 5 mg dose levels, with approximately 3-day half-life. With repeat dose of 5 mg/eye, free-ANX007 was measurable 4 weeks post-last dose in perfused retina and choroid and up to approximately 2 weeks post-last dose in optic nerve. There was a strong correlation between C1q target engagement and free drug levels in aqueous and vitreous humors and retinal tissue. Conclusions: Following IVT administration, ANX007 distributes to sites within the retina that are relevant to neurodegenerative ophthalmic disease with clear evidence of C1q target engagement. Based on its mechanism of action inhibiting C1q and its downstream activity, ANX007 is predicted to mitigate tissue damage driven by classical complement activation in the retina. These data support further clinical evaluation of ANX007.


Asunto(s)
Retina , Cuerpo Vítreo , Animales , Masculino , Femenino , Macaca fascicularis , Distribución Tisular , Retina/metabolismo , Cuerpo Vítreo/metabolismo , Fragmentos Fab de Inmunoglobulinas
5.
Int J Retina Vitreous ; 8(1): 79, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348407

RESUMEN

Geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is a retinal neurodegenerative disorder. Human genetic data support the complement system as a key component of pathogenesis in AMD, which has been further supported by pre-clinical and recent clinical studies. However, the involvement of the different complement pathways (classical, lectin, alternative), and thus the optimal complement inhibition target, has yet to be fully defined. There is evidence that C1q, the initiating molecule of the classical pathway, is a key driver of complement activity in AMD. C1q is expressed locally by infiltrating phagocytic cells and C1q-activating ligands are present at disease onset and continue to accumulate with disease progression. The accumulation of C1q on photoreceptor synapses with age and disease is consistent with its role in synapse elimination and neurodegeneration that has been observed in other neurodegenerative disorders. Furthermore, genetic deletion of C1q, local pharmacologic inhibition within the eye, or genetic deletion of downstream C4 prevents photoreceptor cell damage in mouse models. Hence, targeting the classical pathway in GA could provide a more specific therapeutic approach with potential for favorable efficacy and safety.

6.
Science ; 373(6560): eabj2685, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516796

RESUMEN

Although traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild TBI (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic system. Increased C1q expression colocalized with neuron loss and chronic inflammation and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are a source of thalamic C1q. The corticothalamic circuit could thus be a new target for treating TBI-related disabilities.


Asunto(s)
Lesiones Encefálicas/complicaciones , Complemento C1q/fisiología , Fases del Sueño , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/fisiopatología , Tálamo/fisiopatología , Animales , Lesiones Encefálicas/fisiopatología , Complemento C1q/genética , Modelos Animales de Enfermedad , Epilepsia/fisiopatología , Ratones , Microglía/metabolismo , Tálamo/metabolismo
7.
Cell Rep ; 29(10): 3087-3100.e7, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801075

RESUMEN

Movement is an essential behavior requiring the assembly and refinement of spinal motor circuits. However, the mechanisms responsible for circuit refinement and synapse maintenance are poorly understood. Similarly, the molecular mechanisms by which gene mutations cause dysfunction and elimination of synapses in neurodegenerative diseases that occur during development are unknown. Here, we demonstrate that the complement protein C1q is required for the refinement of sensory-motor circuits during normal development, as well as for synaptic dysfunction and elimination in spinal muscular atrophy (SMA). C1q tags vulnerable SMA synapses, which triggers activation of the classical complement pathway leading to microglia-mediated elimination. Pharmacological inhibition of C1q or depletion of microglia rescues the number and function of synapses, conferring significant behavioral benefit in SMA mice. Thus, the classical complement pathway plays critical roles in the refinement of developing motor circuits, while its aberrant activation contributes to motor neuron disease.


Asunto(s)
Vía Clásica del Complemento/fisiología , Microglía/metabolismo , Atrofia Muscular Espinal/metabolismo , Animales , Preescolar , Complemento C1q/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Sinapsis/metabolismo
8.
Sci Rep ; 9(1): 16947, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740740

RESUMEN

The over-expression and aggregation of α-synuclein (αSyn) are linked to the onset and pathology of Parkinson's disease. Native monomeric αSyn exists in an intrinsically disordered ensemble of interconverting conformations, which has made its therapeutic targeting by small molecules highly challenging. Nonetheless, here we successfully target the monomeric structural ensemble of αSyn and thereby identify novel drug-like small molecules that impact multiple pathogenic processes. Using a surface plasmon resonance high-throughput screen, in which monomeric αSyn is incubated with microchips arrayed with tethered compounds, we identified novel αSyn interacting drug-like compounds. Because these small molecules could impact a variety of αSyn forms present in the ensemble, we tested representative hits for impact on multiple αSyn malfunctions in vitro and in cells including aggregation and perturbation of vesicular dynamics. We thereby identified a compound that inhibits αSyn misfolding and is neuroprotective, multiple compounds that restore phagocytosis impaired by αSyn overexpression, and a compound blocking cellular transmission of αSyn. Our studies demonstrate that drug-like small molecules that interact with native αSyn can impact a variety of its pathological processes. Thus, targeting the intrinsically disordered ensemble of αSyn offers a unique approach to the development of small molecule research tools and therapeutics for Parkinson's disease.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/farmacología , alfa-Sinucleína/metabolismo , Amiloide/antagonistas & inhibidores , Amiloide/metabolismo , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Fagocitosis/efectos de los fármacos , Pliegue de Proteína , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/toxicidad , Resonancia por Plasmón de Superficie , alfa-Sinucleína/química , alfa-Sinucleína/efectos de los fármacos
9.
Mol Neurodegener ; 13(1): 45, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30126455

RESUMEN

BACKGROUND: The role of the alternative complement pathway and its mediation by retinal microglia and macrophages, is well-established in the pathogenesis of Age-Related Macular Degeneration (AMD). However, the contribution of the classical complement pathway towards the progression of retinal degenerations is not fully understood, including the role of complement component 1q (C1q) as a critical activator molecule of the classical pathway. Here, we investigated the contribution of C1q to progressive photoreceptor loss and neuroinflammation in retinal degenerations. METHODS: Wild-type (WT), C1qa knockout (C1qa-/-) and mice treated with a C1q inhibitor (ANX-M1; Annexon Biosciences), were exposed to photo-oxidative damage (PD) and were observed for progressive lesion development. Retinal function was assessed by electroretinography, followed by histological analyses to assess photoreceptor degeneration. Retinal inflammation was investigated through complement activation, macrophage recruitment and inflammasome expression using western blotting, qPCR and immunofluorescence. C1q was localised in human AMD donor retinas using immunohistochemistry. RESULTS: PD mice had increased levels of C1qa which correlated with increasing photoreceptor cell death and macrophage recruitment. C1qa-/- mice did not show any differences in photoreceptor loss or inflammation at 7 days compared to WT, however at 14 days after the onset of damage, C1qa-/- retinas displayed less photoreceptor cell death, reduced microglia/macrophage recruitment to the photoreceptor lesion, and higher visual function. C1qa-/- mice displayed reduced inflammasome and IL-1ß expression in microglia and macrophages in the degenerating retina. Retinal neutralisation of C1q, using an intravitreally-delivered anti-C1q antibody, reduced the progression of retinal degeneration following PD, while systemic delivery had no effect. Finally, retinal C1q was found to be expressed by subretinal microglia/macrophages located in the outer retina of early AMD donor eyes, and in mouse PD retinas. CONCLUSIONS: Our data implicate subretinal macrophages, C1q and the classical pathway in progressive retinal degeneration. We demonstrate a role of local C1q produced by microglia/macrophages as an instigator of inflammasome activation and inflammation. Crucially, we have shown that retinal C1q neutralisation during disease progression may slow retinal atrophy, providing a novel strategy for the treatment of complement-mediated retinal degenerations including AMD.


Asunto(s)
Complemento C1q/biosíntesis , Macrófagos/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Animales , Progresión de la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Int J Toxicol ; 36(6): 449-462, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29202623

RESUMEN

ANX005 is a humanized immunoglobulin G4 recombinant antibody against C1q that inhibits its function as the initiating molecule of the classical complement cascade. The safety and tolerability of ANX005 are currently being evaluated in a phase I trial in healthy volunteers ( www.clinicaltrials.gov Identifier: NCT03010046). Inhibition of C1q can be applied therapeutically in a broad spectrum of diseases, including acute antibody-mediated autoimmune disease, such as Guillain-Barré syndrome (GBS), and in chronic diseases of the central nervous system involving complement-mediated neurodegeneration, such as Alzheimer's disease (AD). To support the clinical development of ANX005, several studies were conducted to assess the pharmacology, pharmacokinetics, and potential toxicity of ANX005. ANX-M1, the murine precursor of ANX005, functionally inhibits the classical complement cascade both in vitro and in vivo, to protect against disease pathology in mouse models of GBS and AD. Toxicology studies with ANX005, itself, showed that intravenous administration once weekly for 4 weeks was well tolerated in rats and monkeys, with no treatment-related adverse findings. Serum levels of ANX005 in monkeys correlate with a reduction in free C1q levels both in the serum and in the cerebrospinal fluid. In summary, ANX005 has shown proof of concept in in vitro and in vivo nonclinical pharmacology models, with no toxicity in the 4-week repeat-dose studies in rats and monkeys. The no observed adverse effect level was 200 mg/kg/dose, which is 200-fold higher than the first-in-human starting dose of 1 mg/kg in healthy volunteers.


Asunto(s)
Anticuerpos Monoclonales Humanizados/toxicidad , Enfermedades Autoinmunes/tratamiento farmacológico , Complemento C1q/inmunología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Enfermedades Autoinmunes/inmunología , Complemento C1q/metabolismo , Vía Clásica del Complemento/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Inyecciones Intravenosas , Macaca fascicularis , Masculino , Enfermedades Neurodegenerativas/inmunología , Ratas Sprague-Dawley , Especificidad de la Especie
11.
Acta Neuropathol Commun ; 4: 23, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26936605

RESUMEN

INTRODUCTION: Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. RESULTS AND CONCLUSIONS: In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy.


Asunto(s)
Complemento C1q/metabolismo , Vía Clásica del Complemento/fisiología , Gangliósidos/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Animales , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , Complemento C1q/genética , Vía Clásica del Complemento/genética , Diafragma/metabolismo , Diafragma/patología , Transportadores de Ácidos Dicarboxílicos/genética , Modelos Animales de Enfermedad , Gangliósidos/clasificación , Gangliósidos/inmunología , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/patología , Humanos , Infiltración Leucémica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Receptores Nicotínicos/metabolismo , Respiración/efectos de los fármacos , Respiración/genética , Especificidad de la Especie , Simportadores/genética , Volumen de Ventilación Pulmonar/efectos de los fármacos , Volumen de Ventilación Pulmonar/genética
12.
Ann Neurol ; 78(1): 39-53, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25869475

RESUMEN

OBJECTIVE: Although Tc17 lymphocytes are enriched in the central nervous system (CNS) of multiple sclerosis (MS) subjects and of experimental autoimmune encephalomyelitis (EAE) animals, limited information is available about their recruitment into the CNS and their role in neuroinflammation. Identification of adhesion molecules used by autoaggressive CD8(+) T lymphocytes to enter the CNS would allow further characterization of this pathogenic subset and could provide new therapeutic targets in MS. We propose that melanoma cell adhesion molecule (MCAM) is a surface marker and adhesion molecule used by pathogenic CD8(+) T lymphocytes to access the CNS. METHODS: Frequency, phenotype, and function of MCAM(+) CD8(+) T lymphocytes was characterized using a combination of ex vivo, in vitro, in situ, and in vivo approaches in humans and mice, including healthy controls, MS subjects, and EAE animals. RESULTS: Herein, we report that MCAM is expressed by human effector CD8(+) T lymphocytes and it is strikingly upregulated during MS relapses. We further demonstrate that MCAM(+) CD8(+) T lymphocytes express more interleukin 17, interferon γ, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor than MCAM(-) lymphocytes, and exhibit an enhanced killing capacity toward oligodendrocytes. MCAM blockade restricts the transmigration of CD8(+) T lymphocytes across human blood-brain barrier endothelial cells in vitro, and blocking or depleting MCAM in vivo reduces chronic neurological deficits in active, transfer, and spontaneous progressive EAE models. INTERPRETATION: Our data demonstrate that MCAM identifies encephalitogenic CD8(+) T lymphocytes, suggesting that MCAM could represent a biomarker of MS disease activity and a valid target for the treatment of neuroinflammatory conditions.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Linfocitos T CD8-positivos/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Animales , Barrera Hematoencefálica/inmunología , Antígeno CD146/metabolismo , Linfocitos T CD8-positivos/inmunología , Estudios de Casos y Controles , Encefalomielitis Autoinmune Experimental/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Técnicas In Vitro , Inflamación , Interferón gamma/inmunología , Interleucina-17/inmunología , Ratones , Ratones Transgénicos , Esclerosis Múltiple Recurrente-Remitente/inmunología , Oligodendroglía , Factor de Necrosis Tumoral alfa/inmunología
13.
PLoS One ; 9(8): e102909, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25170892

RESUMEN

Detailed analysis of disease-affected tissue provides insight into molecular mechanisms contributing to pathogenesis. Substantia nigra, striatum, and cortex are functionally connected with increasing degrees of alpha-synuclein pathology in Parkinson's disease. We undertook functional and causal pathway analysis of gene expression and proteomic alterations in these three regions, and the data revealed pathways that correlated with disease progression. In addition, microarray and RNAseq experiments revealed previously unidentified causal changes related to oligodendrocyte function and synaptic vesicle release, and these and other changes were reflected across all brain regions. Importantly, subsets of these changes were replicated in Parkinson's disease blood; suggesting peripheral tissue may provide important avenues for understanding and measuring disease status and progression. Proteomic assessment revealed alterations in mitochondria and vesicular transport proteins that preceded gene expression changes indicating defects in translation and/or protein turnover. Our combined approach of proteomics, RNAseq and microarray analyses provides a comprehensive view of the molecular changes that accompany functional loss and alpha-synuclein pathology in Parkinson's disease, and may be instrumental to understand, diagnose and follow Parkinson's disease progression.


Asunto(s)
Encéfalo/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Animales , Encéfalo/metabolismo , Progresión de la Enfermedad , Regulación de la Expresión Génica , Humanos , Análisis por Micromatrices , Proteínas/análisis , Proteínas/genética , Proteínas/metabolismo , Proteómica , Análisis de Secuencia de ARN , Transducción de Señal , alfa-Sinucleína/análisis , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
PLoS One ; 9(2): e87133, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24551051

RESUMEN

The misfolding of intrinsically disordered proteins such as α-synuclein, tau and the Aß peptide has been associated with many highly debilitating neurodegenerative syndromes including Parkinson's and Alzheimer's diseases. Therapeutic targeting of the monomeric state of such intrinsically disordered proteins by small molecules has, however, been a major challenge because of their heterogeneous conformational properties. We show here that a combination of computational and experimental techniques has led to the identification of a drug-like phenyl-sulfonamide compound (ELN484228), that targets α-synuclein, a key protein in Parkinson's disease. We found that this compound has substantial biological activity in cellular models of α-synuclein-mediated dysfunction, including rescue of α-synuclein-induced disruption of vesicle trafficking and dopaminergic neuronal loss and neurite retraction most likely by reducing the amount of α-synuclein targeted to sites of vesicle mobilization such as the synapse in neurons or the site of bead engulfment in microglial cells. These results indicate that targeting α-synuclein by small molecules represents a promising approach to the development of therapeutic treatments of Parkinson's disease and related conditions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/antagonistas & inhibidores , Terapia Molecular Dirigida , Enfermedad de Parkinson/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , alfa-Sinucleína/antagonistas & inhibidores , Animales , Sitios de Unión , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Modelos Biológicos , Modelos Moleculares , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , Fagocitos/efectos de los fármacos , Fagocitos/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
15.
PLoS One ; 8(8): e71634, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058406

RESUMEN

Alpha-synuclein protein is strongly implicated in the pathogenesis Parkinson's disease. Increased expression of α-synuclein due to genetic multiplication or point mutations leads to early onset disease. While α-synuclein is known to modulate membrane vesicle dynamics, it is not clear if this activity is involved in the pathogenic process or if measurable physiological effects of α-synuclein over-expression or mutation exist in vivo. Macrophages and microglia isolated from BAC α-synuclein transgenic mice, which overexpress α-synuclein under regulation of its own promoter, express α-synuclein and exhibit impaired cytokine release and phagocytosis. These processes were affected in vivo as well, both in peritoneal macrophages and microglia in the CNS. Extending these findings to humans, we found similar results with monocytes and fibroblasts isolated from idiopathic or familial Parkinson's disease patients compared to age-matched controls. In summary, this paper provides 1) a new animal model to measure α-synuclein dysfunction; 2) a cellular system to measure synchronized mobilization of α-synuclein and its functional interactions; 3) observations regarding a potential role for innate immune cell function in the development and progression of Parkinson's disease and other human synucleinopathies; 4) putative peripheral biomarkers to study and track these processes in human subjects. While altered neuronal function is a primary issue in PD, the widespread consequence of abnormal α-synuclein expression in other cell types, including immune cells, could play an important role in the neurodegenerative progression of PD and other synucleinopathies. Moreover, increased α-synuclein and altered phagocytosis may provide a useful biomarker for human PD.


Asunto(s)
Inmunidad Innata , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/inmunología , alfa-Sinucleína/inmunología , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Citocinas/inmunología , Femenino , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Transgénicos , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fagocitosis , Regulación hacia Arriba , alfa-Sinucleína/genética
16.
Bioorg Med Chem Lett ; 23(16): 4674-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23856050

RESUMEN

The structure activity relationship of the prime region of conformationally restricted hydroxyethylamine (HEA) BACE inhibitors is described. Variation of the P1' region provided selectivity over Cat-D with a series of 2,2-dioxo-isothiochromanes and optimization of the P2' substituent of chromane-HEA(s) with polar substituents provided improvements in the compound's in vitro permeability. Significant potency gains were observed with small aliphatic substituents such as methyl, n-propyl, and cyclopropyl when placed at the C-2 position of the chromane.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Cromanos/química , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Sitios de Unión , Células Cultivadas , Etilaminas/síntesis química , Etilaminas/química , Etilaminas/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Relación Estructura-Actividad
18.
Bioorg Med Chem Lett ; 23(14): 4117-9, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23743283

RESUMEN

Mitsunobu reactions were employed to link t-butyl esters of α4 integrin inhibitors at each of the termini of a three-arm, 40 kDa, branched PEG. Cleavage of the t-butyl esters using HCO2H provided easily isolated PEG derivatives, which are potent α4 integrin inhibitors, and which achieve sustained levels and bioactivity in vivo, following subcutaneous administration to rats.


Asunto(s)
Integrina alfa4/química , Polietilenglicoles/química , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Ésteres , Semivida , Humanos , Inyecciones Subcutáneas , Integrina alfa4/inmunología , Integrina alfa4/metabolismo , Células Jurkat , Ratas
19.
J Med Chem ; 56(13): 5261-74, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23713656

RESUMEN

Herein, we describe our strategy to design metabolically stable γ-secretase inhibitors which are selective for inhibition of Aß generation over Notch. We highlight our synthetic strategy to incorporate diversity and chirality. Compounds 30 (ELND006) and 34 (ELND007) both entered human clinical trials. The in vitro and in vivo characteristics for these two compounds are described. A comparison of inhibition of Aß generation in vivo between 30, 34, Semagacestat 41, Begacestat 42, and Avagacestat 43 in mice is made. 30 lowered Aß in the CSF of healthy human volunteers.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Pirazoles/farmacología , Quinolinas/farmacología , Receptores Notch/antagonistas & inhibidores , Sulfonamidas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Animales , Área Bajo la Curva , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perros , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Estabilidad de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/química , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Modelos Químicos , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/farmacocinética , Quinolinas/síntesis química , Quinolinas/farmacocinética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Notch/metabolismo , Relación Estructura-Actividad , Sulfonamidas/química , Factores de Tiempo , Factor de Transcripción HES-1
20.
Alzheimers Dement ; 9(5 Suppl): S105-15, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23583235

RESUMEN

BACKGROUND: Clinical studies of ß-amyloid (Aß) immunotherapy in Alzheimer's disease (AD) patients have demonstrated reduction of central Aß plaque by positron emission tomography (PET) imaging and the appearance of amyloid-related imaging abnormalities (ARIA). To better understand the relationship between ARIA and the pathophysiology of AD, we undertook a series of studies in PDAPP mice evaluating vascular alterations in the context of central Aß pathology and after anti-Aß immunotherapy. METHODS: We analyzed PDAPP mice treated with either 3 mg/kg/week of 3D6, the murine form of bapineuzumab, or isotype control antibodies for periods ranging from 1 to 36 weeks and evaluated the vascular alterations in the context of Aß pathology and after anti-Aß immunotherapy. The number of mice in each treatment group ranged from 26 to 39 and a total of 345 animals were analyzed. RESULTS: The central vasculature displayed morphological abnormalities associated with vascular Aß deposits. Treatment with 3D6 antibody induced clearance of vascular Aß that was spatially and temporally associated with a transient increase in microhemorrhage and in capillary Aß deposition. Microhemorrhage resolved over a time period that was associated with a recovery of vascular morphology and a decrease in capillary Aß accumulation. CONCLUSIONS: These data suggest that vascular leakage events, such as microhemorrhage, may be related to the removal of vascular Aß. With continued treatment, this initial susceptibility period is followed by restoration of vascular morphology and reduced vulnerability to further vascular leakage events. The data collectively suggested a vascular amyloid clearance model of ARIA, which accounts for the currently known risk factors for the incidence of ARIA in clinical studies.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Vasos Sanguíneos/patología , Encéfalo/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Acuaporina 4/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/ultraestructura , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hemorragias Intracraneales/etiología , Meninges/patología , Meninges/ultraestructura , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Mutación/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...